Reduced-Rank Matrix Autoregressive Models:

A Medium N Approach

Ivan Ricardo

Maastricht University

Alain Hecq

Maastricht University

Ines Wilms

Maastricht University

November 27, 2024

Data Structures

Univariate \((y_t)\)

\[ \begin{bmatrix} \bullet \\ \bullet \\ \bullet \end{bmatrix} \]

Multivariate \((\mathbf{y}_t)\)

\[ \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \]

Matrix-valued \((\mathbf{Y}_t)\)

Examples of matrix-valued data:

    • Economic indicators for different countries over time

Our Setting

  • We have \(N_1 = 4\) economic indicators (Interest Rates, GDP, Industrial Production, CPI) over \(N_2 = 5\) countries (USA, CAN, DEU, FRA, GBR)
  • We are interested in whether there exists co-movements for the economic indicators and the countries separately

Why Matrix-valued data?

  • “Flattening” loses dimension-specific interpretations
  • Flexibility in reduced-rank structures
  • Allows for more parsimonious models

Main Contributions:

  • Introduce a flexible framework for modeling partial reduced-rank structures with varying ranks across dimensions
  • Offer new insights into co-movements for each dimension of matrix-valued time series
  • Relate co-movements to commonly used reduced-rank models: serial correlation common features (SCCF) and index/factor models

Co-movements for Vector Valued Time Series

VAR for multivariate/vector-valued time series

A standard Vector Autoregression (VAR) for vector-valued time series is \[ \mathbf{y}_t = \sum_{i=1}^p \mathbf{A}_i \mathbf{y}_{t-i} + \mathbf{e}_t, \] with \(\mathbf{A}_i \in \mathbb{R}^{N \times N}\) and \(\mathbf{y}_t \in \mathbb{R}^{N}\)

  • We assume \(\mathbf{A}_i\) has a reduced rank structure

  • \(\mathbf{A}_i\) is the product of two lower dimensional matrices, either \(\mathbf{B} \mathbf{C}_i'\) (SCCF) or \(\mathbf{B}_i \mathbf{C}'\) (Factor model), where \(\mathbf{B}, \mathbf{C} \in \mathbb{R}^{N \times r}\)

  • The short-run dynamics, or reactions to economic cycles, share a common driver

Common Features

  • “A feature will be said to be common if a linear combination of the series fails to have the feature even though each of the series individually has the feature” Engle and Kozicki (1993)
  • Focus on common serial correlation (SCCF) for multiple time series: \[ \mathbf{y}_t = \sum_{i=1}^p \textcolor{red}{\mathbf{B}} \mathbf{C}_i'\mathbf{y}_{t-i} + \mathbf{e}_t, \quad \mathbf{A}_i = \textcolor{red}{\mathbf{B}} \mathbf{C}_i' \]
  • Pre-multiplying \(\mathbf{y}_t\) by \(\mathbf{B}_\perp' \in \mathbb{R}^{(N-r) \times N}\) removes the serial correlation \[ \mathbf{B}_\perp' \mathbf{y}_t = \underbrace{\mathbf{B}_\perp' \mathbf{e}_t}_{\mathbf{e}_t^*} \]

How do we interpret this?

  • Suppose we observe the GDP of three countries: United States (USA), Canada (CAN), and Great Britain (GBR)
  • We estimate the SCCF model with \(r = 1\) and, after rotation, find \[ \mathbf{B}_\perp' = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ \end{bmatrix} \]

\[ y_{t, usa} - 2 y_{t, gbr} = e_{t, 1}^* \quad \text{and} \quad y_{t, can} - y_{t, gbr} = e_{t, 2}^* \]

  • USA and GBR co-move contemporaneously, with USA moving twice as large as GBR
  • CAN and GBR co-move, with CAN moving with GBR

Index Models

\[ \mathbf{y}_t = \sum_{i=1}^p \mathbf{B}_i \textcolor{red}{\mathbf{C}'}\mathbf{y}_{t-i} + \mathbf{e}_t, \quad \mathbf{A}_i = \mathbf{B}_i \textcolor{red}{\mathbf{C}'} \]

  • \(\mathbf{C}' \mathbf{y}_{t-i}\) are the indices, or factors that summarize the information contained in \(\mathbf{y}_{t-i}\)
  • \(\mathbf{y}_t\) is driven by lags of factors
  • Can be used for forecasting or structural analysis of high-dimensional time series

Matrix Autoregressive Models

Matrix Autoregressive Model (MAR)

For matrix-valued time series, we have the MAR(p) model \[ \mathbf{Y}_t = \sum_{i=1}^p \mathcal{A}_i \bar{\times}_2 \mathbf{Y}_{t-i} + \mathbf{E}_t, \] where \(\mathbf{Y}_t \in \mathbb{R}^{N_1 \times N_2}\), \(\mathcal{A}_i \in \mathbb{R}^{N_1 \times N_2 \times N_1 \times N_2}\), and \(\bar{\times}_2\) is the contraction along the second dimension

  • Contraction is the generalization of matrix multiplication extended to tensors
  • In our example, \(N_1\) are economic indicators and \(N_2\) are countries

Contraction Details

Low Rank Structure

\[ \mathbf{Y}_t = \sum_{i=1}^p \mathcal{A}_i \bar{\times}_2 \mathbf{Y}_{t-i} + \mathbf{E}_t \]

We assume \(\mathcal{A}_i\) has a Tucker decomposition (Tucker 1966): \[ \mathcal{A}_i = \mathcal{G}_i \times_1 \mathbf{U}_{1} \times_2 \mathbf{U}_{2} \times_3 \mathbf{U}_{3} \times_4 \mathbf{U}_{4} \in \mathbb{R}^{N_1 \times N_2 \times N_1 \times N_2}, \] \[ \mathbf{U}_{1} \in \mathbb{R}^{N_1 \times r_1}, \quad \mathbf{U}_{2} \in \mathbb{R}^{N_2 \times r_2}, \] \[ \mathbf{U}_{3} \in \mathbb{R}^{N_1 \times r_3}, \quad \mathbf{U}_{4} \in \mathbb{R}^{N_2 \times r_4}, \] \[ \mathcal{G}_i \in \mathbb{R}^{r_1 \times r_2 \times r_3 \times r_4} \]

  • \(\mathbf{U}_j, j = 1, \dots, 4\) may have different ranks, and \(\mathcal{G}_i\) ties it all together

Tucker Decomposition

  • Visualizations are limited to three-dimensional tensors (rather than our four dimensional coefficient)
  • \(\mathcal{A}_i\) is decomposed into a “compressed” core tensor \(\mathcal{G}_i\) and factor matrices \(\mathbf{U}_j\) for \(j = 1, \dots, 4\)

Equivalent VAR representation

  • The Reduced Rank MAR(p) has an equivalent vectorized form, where \(\text{vec}(\mathbf{Y}_t) = \mathbf{y}_t \in \mathbb{R}^{N_1 N_2}\) and \(\text{mat}(\mathcal{A}_i) = \mathbf{A}_i \in \mathbb{R}^{N_1 N_2 \times N_1 N_2}\) \[ \mathbf{y}_t = \sum_{i=1}^p \underbrace{(\mathbf{U}_{2} \otimes \mathbf{U}_{1}) \mathbf{G}_{i} (\mathbf{U}_{4} \otimes \mathbf{U}_{3})'}_{\mathbf{A}_i} \mathbf{y}_{t-i} + \mathbf{e}_t \]

  • \(\text{rank}(\mathbf{A}_i) = \min (r_1 r_2, r_3 r_4)\)

  • Allows us to explore both SCCF and index model restrictions

Another Example

  • We now observe the GDP and Industrial Production (PROD) of each country, with the same three countries as before: USA, CAN, and GBR
  • Forms an \(N_1 \times N_2 = 2 \times 3\) matrix-valued time series
  • All countries co-move, and all economic indicators co-move, resulting in rank \((r_1 = 1,r_2 = 1)\) for the SCCF model \[ \mathbf{U}_{1\perp}' = \begin{bmatrix} 1 & -1 \end{bmatrix}, \quad \mathbf{U}_{2\perp}' = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ \end{bmatrix} \] \[ y_{t, gdp} - y_{t, prod} = e_{t}^* \] \[ y_{t, usa} - 2 y_{t, gbr} = e_{t}^* \quad \text{and} \quad y_{t, can} - y_{t, gbr} = e_{t}^* \]
  • We can separate the effects from the countries and the indicators

Connection with VAR coefficient

  • Left illustrates a partial reduced rank of the indicators \(r_1 = 3\) and \(r_2 = N_2 = 5\)
  • Right illustrates a partial reduced rank of the countries \(r_1 = N_1 = 4\) and \(r_2 = 4\)

Index/Factor Models

\[ \mathbf{y}_t = \sum_{i=1}^p (\mathbf{U}_{2} \otimes \mathbf{U}_{1}) \mathbf{G}_{i} \textcolor{red}{(\mathbf{U}_{4} \otimes \mathbf{U}_{3})'} \mathbf{y}_{t-i} + \mathbf{e}_t \]

Can be rearranged as

\[ \mathbf{f}_t^{resp} = \sum_{i=1}^p \mathbf{G}_{i} \mathbf{f}_{t-i}^{pred} + \mathbf{e}_t^*, \] \[ \mathbf{f}_t^{resp} = (\mathbf{U}_{2} \otimes \mathbf{U}_1)' \mathbf{y}_t \in \mathbb{R}^{r_1 r_2}, \quad \mathbf{f}_{t-i}^{pred} = (\mathbf{U}_{4} \otimes \mathbf{U}_3)' \mathbf{y}_{t-i} \in \mathbb{R}^{r_3 r_4} \]

  • We now have “response” factors \(\mathbf{f}_t\) and “predictor” factors \(\mathbf{f}_{t-i}\) connected with the \(\mathbf{G}_i\) autoregressive coefficient
  • Large autoregression is driven by a small autoregression of factors

Selection of Tucker Ranks

Tucker Rank Selection

  • Standard information criteria (AIC and BIC) to jointly estimate the ranks and lags

\[ \small \text{AIC}(r_1, r_2, r_3, r_4, p) = \ln(|\widehat{\Sigma}_{\mathbf{E}}|) + \frac{2}{T} \phi(r_1, r_2, r_3, r_4, p), \] \[ \small \text{BIC}(r_1, r_2, r_3, r_4, p) = \ln(|\widehat{\Sigma}_{\mathbf{E}}|) + \frac{\ln(T)}{T} \phi(r_1, r_2, r_3, r_4, p), \] where \[ \small \phi(r_1, r_2, r_3, r_4, p) = \prod_{i=1}^{4} r_i p + \sum_{i=1}^2 (r_i (N_i - r_i) + r_{2+i} (N_i - r_{2+i})), \] is the number of parameters in the model

Simulation Study

Simulation Study

  • Selecting Tucker ranks with AIC and BIC
Setting \(N_1 \times N_2 = 3 \times 4\)
Fully Reduced \(\mathbf{r} = (1,1,1,1)\)
Partially Reduced (1st Dimension) \(\mathbf{r} = (3,1,3,1)\)
Partially Reduced (2nd Dimension) \(\mathbf{r} = (1,4,1,4)\)
No Rank Reduction \(\mathbf{r} = (3,4,3,4)\)

Fully reduced

True rank of \(\mathbf{r} = (1,1,1,1)\)

Method1 Average Rank Standard Deviation Freq. Correct
AIC (100) (1.42, 1.43, 1.54, 1.60) (0.71, 0.81, 0.78, 1.01) (0.71, 0.72, 0.64, 0.69)
BIC (100) (1.01, 1.00, 1.01, 1.00) (0.12, 0.00, 0.11, 0.00) (0.99, 1.00, 0.99, 1.00)
AIC (500) (1.35, 1.31, 1.42, 1.41) (0.67, 0.72, 0.71, 0.87) (0.76, 0.80, 0.71, 0.78)
BIC (500) (1.00, 1.00, 1.00, 1.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)

Partially reduced first dimension

True rank of \(\mathbf{r} = (3,1,3,1)\)

Method Average Rank Standard Deviation Freq. Correct
AIC (100) (3.00, 1.04, 3.00, 1.11) (0.00, 0.22, 0.00, 0.40) (1.00, 0.96, 1.00, 0.91)
BIC (100) (3.00, 1.00, 3.00, 1.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)
AIC (500) (3.00, 1.01, 3.00, 1.04) (0.00, 0.10, 0.00, 0.23) (1.00, 0.99, 1.00, 0.96)
BIC (500) (3.00, 1.00, 3.00, 1.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)

Partially reduced second dimension

True rank of \(\mathbf{r} = (1,4,1,4)\)

Method Average Rank Standard Deviation Freq. Correct
AIC (100) (1.01, 4.00, 1.05, 4.00) (0.10, 0.00, 0.25, 0.00) (0.99, 1.00, 0.96, 1.00)
BIC (100) (1.00, 4.00, 1.00, 4.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)
AIC (500) (1.00, 4.00, 1.02, 4.00) (0.04, 0.00, 0.15, 0.00) (0.99, 1.00, 0.98, 1.00)
BIC (500) (1.00, 4.00, 1.00, 4.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)

No rank reduction

True rank of \(\mathbf{r} = (3,4,3,4)\)

Method Average Rank Standard Deviation Freq. Correct
AIC (100) (3.00, 4.00, 3.00, 4.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)
BIC (100) (3.00, 4.00, 3.00, 4.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)
AIC (500) (3.00, 4.00, 3.00, 4.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)
BIC (500) (3.00, 4.00, 3.00, 4.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)

Applications

Macroeconomic indicators for various countries

  • AIC selects a rank of \((4,5,4,5)\) with three lags, while BIC selects a rank of \((3,1,4,3)\) with one lag
  • Contemporaneous co-movements between indicators and countries
  • Factors are driven by countries, full rank for indicators

Serial Correlation Common Features

  • \((r_1=3,r_2=1)\) implies a partially reduced economic indicator dimension, while the country dimension is fully reduced

Economic Indicators

  • Rank of \(r_1=3\): one co-movement relation between all four indicators
  • Normalizing over the second variables (GDP), we obtain
Indicator
IR 0.0001
GDP 1
PROD -0.3331
CPI 0.1194
  • GDP movements are approximately three times that of manufacturing production across all countries, while CPI inversely co-moves with GDP

Serial Correlation Common Features

Countries

  • Rank of \(r_2=1\): all countries co-move contemporaneously
  • If we are interested in the co-movements of the U.S., we normalize the null space matrix accordingly
Country
USA -0.85 -0.74 -0.79 -0.77
CAN 1.00 0.00 0.00 0.00
DEU 0.00 1.00 0.00 0.00
FRA 0.00 0.00 1.00 0.00
GBR 0.00 0.00 0.00 1.00
  • Almost one-to-one co-movements of all countries with the U.S., with the Canadian economic indicators most closely moving together with the U.S. ones, as evident from the first column

Factor Models

  • \((r_3=4,r_4=3)\) implies a full rank indicator dimension, while the country dimension is partially reduced
  • We construct predictor factors \(\mathbf{F}_t^{pred} = \mathbf{U}_3^\top \mathbf{Y}_{t-1} \mathbf{U}_4 \in \mathbb{R}^{4 \times 3}\)

Conclusion

  • RR-MAR captures dimension-specific co-movement dynamics in matrix time series at aggregate levels
  • Uncovers contemporaneous and lagged relationships for fully/partially reduced rank structures
  • Co-movements identified for all countries and strongest for GDP/PROD

Arxiv

Reproduction

Package

Matricization/Unfolding

For any \(K\)-dimensional tensor \(\mathcal{Y} \in \mathbb{R}^{N_1 \times \dots \times N_K}\), denote its mode-\(k\) unfolding \(\mathbf{Y}_{(k)} \in \mathbb{R}^{N_k \times N_{-k}}\), with \(N_{-k}:= \prod_{i = 1, i \neq k}^K N_i\), as the matrix obtained by setting the \(k\)-th tensor mode as its rows and collapsing all the other dimensions into the columns. Specifically, the \((n_1, \dots, n_K)\)-th element of \(\mathcal{Y}\) is mapped to the \((n_k, j)\)-element of \(\mathbf{Y}_{(k)}\), where

\[ j = 1 + \sum_{\substack{l = 1,\\l \neq k}}^K (n_l - 1) J_l \quad \text{with} \quad J_l = \prod_{\substack{m = 1,\\m \neq k}}^{l - 1} N_m. \]

Examples

Let the frontal slices of a tensor \(\mathcal{X} \in \mathbb{R}^{3 \times 4 \times 2}\) be as follows \[ \scriptsize \begin{align*} \mathcal{X} = \left[ \begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix}, \begin{bmatrix} 13 & 16 & 19 & 22 \\ 14 & 17 & 20 & 23 \\ 15 & 18 & 21 & 24 \end{bmatrix}\right] \end{align*} \] The three mode-\(n\) unfoldings are: \[ \scriptsize \begin{gather*} \mathbf{X}_{(1)} = \begin{bmatrix} 1 & 4 & 7 & 10 & 13 & 16 & 19 & 22 \\ 2 & 5 & 8 & 11 & 14 & 17 & 20 & 23 \\ 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 \end{bmatrix} \quad \mathbf{X}_{(2)} = \begin{bmatrix} 1 & 2 & 3 & 13 & 14 & 15 \\ 4 & 5 & 6 & 16 & 17 & 18 \\ 7 & 8 & 9 & 19 & 20 & 21 \\ 10 & 11 & 12 & 22 & 23 & 24 \end{bmatrix} \\ \mathbf{X}_{(3)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & \dots & 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 & 17 & \dots & 21 & 22 & 23 & 24 \end{bmatrix} \end{gather*} \] Back to main

Contraction

The mode-n product between a tensor \(\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \dots \times I_N}\) and a matrix \(\mathbf{U} \in \mathbb{R}^{J \times I_n}\) is then denoted \[ \small \begin{align*} (\mathcal{X} \times_{n} \mathbf{U})_{i_1, \dots, i_{n-1}, j, i_{n+1}, \dots, i_N} = \sum_{i_n = 1}^{I_n} x_{i_1, i_2, \dots, i_N} u_{j, i_n} \in \mathbb{R}^{I_1 \times \dots \times I_{n-1} \times J \times I_{n+1} \times \dots \times I_N} \end{align*} \]

This can also be expressed in terms of unfolded tensors as \[ \begin{equation*} \small \mathcal{Y} = \mathcal{X} \times_{n} \mathbf{U} \quad \Leftrightarrow \quad \mathbf{Y}_{(n)} = \mathbf{U} \mathbf{X}_{(n)} \end{equation*} \]

Contraction

Suppose we have \(\mathcal{X} \in \mathbb{R}^{I_1 \times \dots \times I_M}\) and \(\mathcal{Y} \in \mathbb{R}^{J_1 \times \dots \times J_N}\) with \(I_m = J_1\). The sequence of contracted products is denoted by \(\mathcal{X} \bar{\times}_{M} \mathcal{Y}\) and yields a \((M+N-2)\) order tensor \(\mathcal{Z} \in \mathbb{R}^{I_1 \times \dots \times I_{M-1} \times J_1 \times \dots \times J_{N-1}}\) with entries \[ \small \begin{align*} \mathcal{Z}_{i_1, \dots, I_{M-1}, j_2, \dots, j_N} = (\mathcal{X} \times_{M} \mathcal{Y})_{i_1, \dots, i_{M-1}, j_2, \dots, j_N} = \sum_{i_M = 1}^{I_M} \mathcal{X}_{i_1, \dots, i_{M-1}, i_M} \mathcal{Y}_{i_M, j_2, \dots, j_N} \end{align*} \] If we have a \(5 \times 4 \times 3 \times 2\) tensor \(\mathcal{A}\) and a \(3 \times 2\) matrix \(\mathbf{B}\), the sequence of contractions yields the matrix \[ \small \mathcal{A} \bar{\times}_2 \mathbf{B} = \mathbf{C} \in \mathbb{R}^{5 \times 4} \]

Back to main

Fully reduced

True rank of \(\mathbf{r} = (1,1,1,1)\)

Method Average Rank Standard Deviation Freq. Correct
AIC (100) (1.25, 1.08, 1.25, 1.16) (0.43, 0.38, 0.43, 0.85) (0.75, 0.94, 0.75, 0.94)
BIC (100) (1.06, 1.00, 1.06, 1.00) (0.24, 0.00, 0.24, 0.00) (0.94, 1.00, 0.94, 1.00)
AIC (500) (1.18, 1.07, 1.19, 1.06) (0.39, 0.30, 0.39, 0.29) (0.82, 0.94, 0.81, 0.95)
BIC (500) (1.01, 1.00, 1.01, 1.00) (0.09, 0.00, 0.09, 0.00) (0.99, 1.00, 0.99, 1.00)

Partially reduced first dimension

True rank of \(\mathbf{r} = (1,9,1,9)\)

Method Average Rank Standard Deviation Freq. Correct
AIC (100) (1.00, 8.97, 1.00, 8.97) (0.00, 0.19, 0.04, 0.19) (1.00, 0.97, 1.00, 0.98)
BIC (100) (1.00, 8.71, 1.00, 8.71) (0.00, 0.65, 0.00, 0.65) (1.00, 0.82, 1.00, 0.82)
AIC (500) (1.00, 9.00, 1.00, 9.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)
BIC (500) (1.00, 8.99, 1.00, 8.99) (0.00, 0.09, 0.00, 0.09) (1.00, 0.99, 1.00, 0.99)

Partially reduced second dimension

True rank of \(\mathbf{r} = (2,1,2,1)\)

Method Average Rank Standard Deviation Freq. Correct
AIC (100) (2.00, 1.11, 2.00, 1.18) (0.00, 0.43, 0.00, 0.81) (1.00, 0.93, 1.00, 0.92)
BIC (100) (2.00, 1.00, 2.00, 1.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)
AIC (500) (2.00, 1.06, 2.00, 1.08) (0.00, 0.31, 0.00, 0.36) (1.00, 0.95, 1.00, 0.94)
BIC (500) (2.00, 1.00, 2.00, 1.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)

No rank reduction

True rank of \(\mathbf{r} = (2,9,2,9)\)

Method Average Rank Standard Deviation Freq. Correct
AIC (100) (2.00, 9.00, 2.00, 9.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)
BIC (100) (2.00, 8.83, 2.00, 8.58) (0.00, 0.38, 0.00, 0.65) (1.00, 0.83, 1.00, 0.67)
AIC (500) (2.00, 9.00, 2.00, 9.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)
BIC (500) (2.00, 9.00, 2.00, 9.00) (0.00, 0.00, 0.00, 0.00) (1.00, 1.00, 1.00, 1.00)

Estimation by Least Squares

\[ \small \begin{flalign*} \widehat{\mathcal{A}} &= [[\widehat{\mathcal{G}}; \widehat{\mathbf{U}}_1, \widehat{\mathbf{U}}_2, \widehat{\mathbf{U}}_3, \widehat{\mathbf{U}}_4]] = && \end{flalign*} \] \[ \small \underset{\substack{\mathcal{G} \in \mathbb{R}^{r_1 \times r_2 \times r_3 \times r_4},\\ \mathbf{U}_{i} \in \mathbb{R}^{N_j \times r_i}}}{\arg\min} \left\{ \frac{1}{2T}\sum_{t=1}^T \|\text{vec}(\mathbf{Y}_t) - \left(\mathbf{U}_2 \otimes \mathbf{U}_1\right) \mathbf{G}_{[2]} \left( \mathbf{I}_p \otimes \mathbf{U}_4 \otimes \mathbf{U}_3\right)^\top \text{vec}(\mathcal{X}_{t})\|_F^2\right\}, \]

  • Rearrange the lags into a separate dimension to make \(\mathcal{X}_t\)
  • Non-convex optimization problem as with many reduced rank problems
  • Use an alternating gradient descent scheme to solve

Projection Matrices

  • Projection matrices \(\mathbf{U}_i \mathbf{U}_i'\) are exactly identified
  • Tell us which variables are most important for each factor

Coincident and Leading Indexes for U.S. States

  • Consider \(N_1 = 2\) indicators (coincident and leading) over \(N_2 = 9\) states: Iowa (IA), Illinois (IL), Indiana (IN), Michigan (MI), Minnesota (MN), North Dakota (ND), Ohio(OH), South Dakota (SD), and Wisconsin (WI)
  • Coincident and Leading Indicators may not move with one another, but different states may co-move

Coincident and Leading Indexes for U.S. States

  • AIC selects full rank with two lags, while BIC selects full rank with one lag
  • Results suggest no evidence for co-movements among the indicators or the states
  • Highlight the potential for identifying no rank reduction in the data

References

Engle, Robert F., and Sharon Kozicki. 1993. “Testing for Common Features.” Journal of Business & Economic Statistics 11 (4): 369–80. https://doi.org/10.1080/07350015.1993.10509966.
Samadi, S. Yaser, and Lynne Billard. 2024. “On a Matrix-Valued Autoregressive Model.” Journal of Time Series Analysis. https://onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.12748.
Tucker, Ledyard R. 1966. “Some Mathematical Notes on Three-Mode Factor Analysis.” Psychometrika 31 (3): 279–311.
Yuan, Chaofeng, Zhigen Gao, Xuming He, Wei Huang, and Jianhua Guo. 2023. Two-way dynamic factor models for high-dimensional matrix-valued time series.” Journal of the Royal Statistical Society Series B: Statistical Methodology 85 (5): 1517–37. https://doi.org/10.1093/jrsssb/qkad077.